SECORIN - A NEW DIHYDROFUROCOUMARIN FROM THE ROOTS OF Seseli coronatum

L. I. Dukhovlinova, Yu. E. Sklyar, and M. E. Perel'son

UDC 547.9:582.89

From an acetone extract of the roots of <u>Seseli coronatum</u> Ledeb., collected by M. G. Pimenov in the environs of the village of Priozernyi (East Kazakhstan oblast), by chromatography on silica gel L 40/100 in the petroleum ether—ethyl acetate (3:1) system we have isolated a new coumarin derivative, secorin, $C_{23}H_{20}O_6$, with mp 212-213°C (from ethyl acetate), $[\alpha]_D^{20}-220^\circ$ (c 1.0; ethanol), M⁺ 392.

The UV spectrum of this substance in ethanol [λ max, nm (log ϵ): 218 infl. (4.69), 247 infl. (4.16), 258 (4.13), 302 infl. (4.60), 3.19 (4.70)] shows that it is a 7-hydroxycoumarin derivative.

The NMR spectrum of secorin (Varian HA-100 D, CDCl₃, 0-HMDS, 25°C) showed signals (δ , ppm) at 1.54 and 1.57 (s, 3H each, two CH₃-C-OCOR); at 3.23 (d, 2H, J=8 Hz, Ar-CH₂-CH); at 5.06 [t, 1H, J=8 Hz, -C-CH(OAr)-CH₂-Ar]; at 6.17 (d, 1H, J=10 Hz; H₃); and at 7.54 (d, 1H, J=10 Hz, H₄). This shows that one of the fragments of the secorin molecule is a dihydrofurocoumarin residue [1]; the presence in the NMR spectrum (CD₃OD, 0-HMDS, 25°C) of secorin of one-proton singlets at 7.34 ppm (H₅) and 6.69 ppm (H₈) shows that the secorin molecule is based on a dihydrofurocoumarin of the linear type - marmezin or nodakenetin. This conclusion is also confirmed by the presence in the mass spectrum of secorin of a peak with m/e 246, which is characteristic for derivatives of this type, such as esters of marmezin.

In addition to the band of a lactone carbonyl (1720 cm⁻¹), the IR spectrum of secorin (Fig. 1) has a band at 1690 cm⁻¹. This indicates that secorin consists of an ester of a dihydrofurocoumarin and an acid $C_9H_8O_3$ containing a double bond in the α,β position; this is also indicated by the presence in the mass spectrum of the compound of a strong peak with m/e 147 ($C_8H_7O-C\equiv O^+$), which is characteristic for such esters. The structure of the acyl residue follows from the IR and NMR spectra of secorin. An absorption band at 3350 cm⁻¹ in the IR spectrum (see Fig. 1) shows that there is a hydroxyl in the acyl residue. In the

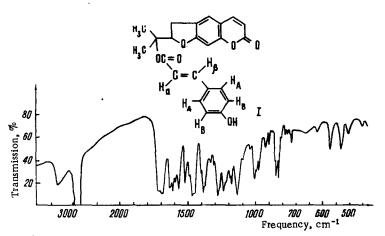


Fig. 1. IR spectrum of secorin (mull in paraffin oil).

All-Union Scientific-Research Institute of Medicinal Plants. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 663-664, September-October, 1973. Original article submitted February 15, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

NMR spectrum (CD₃OD) there are the signals characteristic for a trans-p-hydroxycinnamic acid residue; two one-proton doublets at δ 5.98 ppm (H $_{\alpha}$) and 7.05 ppm (H $_{\beta}$), J=15.8 Hz (trans-CH=CH-), and two two-proton doublets at δ 6.65 ppm (H $_{A}$) and 7.11 ppm (H $_{B}$), J=8.8 Hz (protons of a benzene ring).

The sign and large angle of the optical rotation of secorin enable it to be considered, with a fair degree of probability, to be a derivative of nodakenetin and not of marmezin.

Thus, secorin (I) is nodakenetin trans-p-hydroxycinnamate.

LITERATURE CITED

1. M. E. Perel'son, Yu. N. Sheinker, A. A. Savina, and G. P. Syrova, Khim. Prirodn. Soedin., 712 (1971).